terça-feira, 18 de outubro de 2011


Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase

Nature
 
(2011)
 
doi:10.1038/nature10504
Received
 
 
Accepted
 
 
Published online
 
Membrane-bound respiratory [NiFe]-hydrogenase (MBH), a H2-uptake enzyme found in the periplasmic space of bacteria, catalyses the oxidation of dihydrogen: H2right arrow2H++2e (ref. 1). In contrast to the well-studied O2-sensitive[NiFe]-hydrogenases (referred to as the standard enzymes), MBH has an O2-tolerant H2 oxidation activity234; however, the mechanism of O2 tolerance is unclear5. Here we report the crystal structures of Hydrogenovibrio marinusMBH in three different redox conditions at resolutions between 1.18 and 1.32Å. We find that the proximal iron-sulphur (Fe-S) cluster of MBH has a[4Fe-3S] structure coordinated by six cysteine residues—in contrast to the[4Fe-4S] cubane structure coordinated by four cysteine residues found in the proximal Fe-S cluster of the standard enzymes—and that an amide nitrogen of the polypeptide backbone is deprotonated and additionally coordinates the cluster when chemically oxidized, thus stabilizing the superoxidized state of the cluster. The structure of MBH is very similar to that of the O2-sensitive standard enzymes except for the proximal Fe-S cluster. Our results give a reasonable explanation why the O2tolerance of MBH is attributable to the unique proximal Fe-S cluster; we propose that the cluster is not only a component of the electron transfer for the catalytic cycle, but that it also donates two electrons and one proton crucial for the appropriate reduction of O2 in preventing the formation of an unready, inactive state of the enzyme.

Figures at a glance

Nenhum comentário :

Postar um comentário